
versie: 12/25

Door: Marcel Kornegoor & Marco Lammers

WHITEPAPER
OP E N  S OUR CE 
S OF T WA R E 
ONDE R  C ON T R OL E
ZO N D ER  VEN D O R  LO CK- IN
VA N  B ELEID  NA A R  A C TIE

COMPUTING
A T Y P I C A L  O P E N  S O U R C E  G U R U S



W H I T E P A P E R  - R I S I C O ' S  E N  M I T I G E R E N D E  M A A T R E G E L E N  V A N  G E N E R A T I V E  A I 2

TL;DR
Bij vrijwel iedere organisatie vormt open source software (OSS) een onzichtbare spil in de 

ICT-infrastructuur. Toch blijft vaak een zekere terughoudendheid bestaan: “We willen een 

leverancier met contract, want anders lopen we onaanvaardbare risico’s en nemen we onze 

verantwoordelijkheid niet”, is een geluid dat regelmatig klinkt. Dat is begrijpelijk, maar het berust 

op een verouderd denkmodel. Tijd om het anders te zien!

 �DE  K E R N  VA N  HE T  P R OB L E E M
Veel bedrijven redeneren als volgt: "We zijn geen softwarebedrijf, dus we willen een contract (SLA) met een 

softwareleverancier - we willen deze leverancier verantwoordelijk maken en kunnen bellen als er iets mis gaat.” 

Dat klinkt logisch, maar het creëert vooral schijnzekerheid.

Geen enkel contract garandeert veiligheid. In een contract of overeenkomst worden vooral afspraken gemaakt over te 

nemen maatregelen en reactiesnelheid bij een incident of verstoring. Soms is een contract voorzien van claim-modules 

die recht geven op financiële compensatie wanneer een probleem of storing langer duurt dan overeengekomen. 

Ook dat zijn geen harde garanties dat de kwaliteit van de afgenomen software op orde is, het zegt alleen iets over 

inspanningen die worden gedaan op gebied van kwaliteit of bepaalde kaders en richtlijnen die gehanteerd worden bij 

het vervaardigen van de software. Een contract is dus feitelijk niet meer dan een vorm van risicobeheersing die een 

risico vermindert. Het is geen maatregel die een risico daadwerkelijk wegneemt.



3W H I T E P A P E R  -  O P E N  S O U R C E  S O F T W A R E  O N D E R  C O N T R O L E

 �DE  S T R AT E GISCHE  K R A CH T  VA N  OP ENHEID
Bij closed-source (propriëtaire) software weet je nooit 

precies wat je in huis haalt; je vertrouwt volledig op de 

blauwe ogen van de vendor. Alleen de vendor kan “onder 

de motorkap” en weet als enige hoe de software intern 

precies werkt. Bij OSS kun je wel onder de motorkap. 

Sterker nog: je kunt tot in het kleinste detail zien hoe 

de (elektro) motor precies in elkaar steekt. Dit biedt 

strategische voordelen die veel verder gaan dan alleen 

het besparen van licentiekosten. Het belangrijkste 

voordeel is digitale soevereiniteit: je wordt bevrijd 

van vendor lock-in. Je bent niet langer afhankelijk van 

de grillige roadmap, prijsverhogingen of (vijandelijke) 

overnames van een leverancier, maar houdt zelf de 

controle over de levenscyclus van je software. Daarnaast 

is de innovatiesnelheid binnen actieve communities 

vaak vele malen hoger dan binnen de muren van een 

enkele softwarefabrikant. Doordat je de broncode kunt 

inzien, inspecteren en aanpassen, verandert jouw rol van 

passieve consument naar een organisatie die zelf aan het 

stuur kan zitten van haar IT-landschap. Je hebt invloed op 

de software en kunt op diverse manieren bijdragen aan 

het verbeteren ervan. Zo pak je pas echt eigenaarschap 

over je IT-risico’s!

De praktijk laat zien dat grote leveranciers, ondanks 

een afgesloten contract, óók last hebben van storingen/

uitval en problemen. Denk aan de recente GitLab-breach 

bij IBM’s Red Hat, waarbij gevoelige gegevens van 

deze IT-reus en haar klanten werden buitgemaakt. Of 

aan storingen en grote security-incidenten bij Microsoft 

of Amazon Web Services door de jaren heen — van 

Exchange-lekken tot het wereldwijde CrowdStrike-

incident. Ook CDN-providers zoals CloudFlare en 

andere cloudaanbieders die veelal werken op basis van 

miljoenencontracten met grootzakelijke klanten hebben 

grote verstoringen gehad.

Deze voorbeelden tonen één ding aan: een vendor-

contract neemt het risico niet gegarandeerdweg. 

Uiteindelijk blijf jij eindverantwoordelijk voor de geleverde 

diensten en daarmee voor zaken als monitoring, 

configuratie, beschikbaarheid, integriteit, vertrouwelijkheid 

(BIV) én continuïteit. Niet de aanwezigheid van een 

contract, maar de adequate uitvoering van (onderhouds) 

werkzaamheden bepaalt in grote mate de veiligheid en 

stabiliteit van software en IT-systemen.

Het veiligheidsdenken van de in Nederland geboren 

professor Sidney Dekker laat zien dat veiligheid ontstaat 

door te focussen op hoe werk écht wordt gedaan (work-

as-done), niet slechts op wat beleidsmakers verzinnen 

(work-as-imagined). Wanneer je OSS als bedrijf ziet als 

iets waarvoor een leverancier moet zorgen — en jij er 

verder niets aan kunt/wilt doen — dan mis je de vraag 

die ertoe doet: hoe zorgen we dat het voor ons veilig en 

betrouwbaar werkt?

Het omdenken gaat nog een stap verder, want de 

uitdagingen om OSS verantwoord in te zetten zijn 

simpelweg anders dan bij propriëtaire software. Het zorgt 

echter ook voor kansen en mogelijkheden die propriëtaire 

software niet biedt. Laten we hier in de volgende 

paragraaf eens op inzoomen.



4W H I T E P A P E R  -  O P E N  S O U R C E  S O F T W A R E  O N D E R  C O N T R O L E

 �A A ND A CH T SP UN T EN  BI J  OSS -GEBRUIK
We kijken naar drie belangrijke aandachtspunten die 

vaak over het hoofd worden gezien, maar essentieel 

zijn wanneer je OSS professioneel en verantwoord wilt 

gebruiken.

Bij commerciële software kun je denken: er is een 

leverancier, dus het is geregeld. Bij OSS is dat 

fundamenteel anders — de afhankelijkheid ligt bij een 

gemeenschap (community) van ontwikkelaars, in veel 

gevallen met een bijbehorend project: dit zijn de mensen 

die de software onderhouden. Niet ieder project of 

iedere community is even volwassen of actief. Het is 

daarom verstandig om selectiecriteria te hanteren, zoals 

bijvoorbeeld:

-	� Is het project actief (van wanneer is de laatste 

update?)? 

-	 Heeft het project een levendige community? 

-	 Zijn er regelmatig releases? 

-	 Is er een roadmap?

-	� Is er een stabiele vorm van funding (een commercieel 

verdienmodel of sponsoring door individuen of 

bedrijven)

Dit soort vragen geeft zicht op het onderhouds- en 

continuïteitsrisico.

Soms wordt de uitspraak gedaan dat “vendor contracts” 

nodig zijn om aan compliance-frameworks te voldoen. 

Dat is onjuist. In werkelijkheid gaat het erom dat je de 

risico’s voor je bedrijfsvoering beheerst door middel 

van adequate maatregelen. Hoe je dit realiseert wordt 

in compliance-frameworks niet afgedwongen: het kan 

dus op meerdere manieren. Dit hoeft dus niet per se een 

contract te zijn. Je kunt OSS dus prima inzetten, zolang 

je maar goed nadenkt over wat je aan OSS gebruikt 

en hoe je het gecontroleerd/verantwoord gebruikt. Dit 

betekent dus dat je ervoor kunt kiezen om zelf zaken als 

patching, onderhoud, (security) incidenten en operationele 

verantwoordelijkheid op je te nemen en dat niet aan een 

externe leverancier over te laten. Mocht je dit toch niet 

zelf willen doen, dan kun je bij OSS het onderhoud ook 

“los” uitbesteden, zonder daarmee aan een vendor vast 

te zitten. Dit is vergelijkbaar met onderhoud aan een auto. 

Als je een auto koopt dan ben je niet verplicht om het 

onderhoud van de auto bij de fabrikant of dealer te doen. 

Je kunt ook voor een onafhankelijk garagebedrijf kiezen.  

Om de risico’s onder controle te houden, is het dus 

(wederom) belangrijk om kritisch te kijken welke OSS 

je inzet. Volwassen OSS projecten geeft je enorm veel 

inzicht in hun status. Denk aan licentie, SBOM (software 

bill of materials, oftewel de lijst met "ingrediënten" waaruit 

de software bestaat), project governance, security tests, 

bekende kwetsbaarheden en bugs, code reviews etc. 

Deze vorm van transparantie maakt feitelijk dat je veel 

beter weet waar je aan begint en dus welke risico’s 

je loopt. Organisaties zoals de CNCF (Cloud Native 

Compute Foundation) hebben voor projecten die onder 

hun auspiciën vallen duidelijke richtlijnen op gebied van 

governance.

Beleidsstukken vol met hoofdstukken en paragrafen zijn 

mooi, maar wanneer ze een slaapplaats vinden op het 

intranet dan brengen ze weinig effect teweeg. Wat telt 

is: wie doet wat, wanneer, waarmee, en hoe meten we 

dat? Dekker zou zeggen: richt je op wat mensen werkelijk 

doen, niet op wat in het beleidsboek staat.Creëer daarom 

liever een beperkte set aan concrete maatregelen, met 

eenvoudige checklists, duidelijke eigenaren en teken het 

proces uit. Zorg dat je begint met uitvoering! Beschrijf 

daarna wat je daadwerkelijk doet, in plaats van andersom.

1. ECOSYSTEEM EN ONDERHOUD

3. VAN BELEID NAAR ACTIE
2. LICENTIE-, COMPLIANCE- EN
SUPPORT-VRAAGSTUKKEN



5W H I T E P A P E R  -  O P E N  S O U R C E  S O F T W A R E  O N D E R  C O N T R O L E

 �MOGEL I JK E  OP L OSSINGEN  IN  DE  P R A K T I JK
Er zijn twee concrete routes die je kunt bewandelen om 

OSS-gebruik beter te beheersen — zonder de “als we 

een vendor hebben dan is het veilig” illusie.

Je hoeft niet elk risico tot op het hoogste detailniveau met 

beleid af te dichten. 100% veilig of 100% risicovrij bestaat 

simpelweg niet. Focus daarom op de essentiële 90% van 

controls die het grootste effect hebben:

-	� Inventarisatie: weet welke OSS-componenten je 

gebruikt (SBOM, dependency-lijst). Deze SBOM 

kun je opslaan in bijvoorbeeld een CMDB of in je 

versiebeheersysteem als onderdeel van je software-

project.

-	� Evaluatie: hanteer een checklist met o.a. 

kwaliteitscriteria, toegestane licenties en project-

gezondheid

-	� Processen: definieer hoe nieuwe OSS wordt gekozen, 

getest, geïmplementeerd en onderhouden

-	� Continuïteit: bepaal wat je doet als er binnen een 

project (“upstream”) onvoorziene veranderingen 

optreden (stopzetten, wisseling van de wacht, of een 

kritieke kwetsbaarheid ontstaat)

-	� Eigenaarschap: wijs mensen aan die verantwoordelijk 

zijn voor de betreffende OSS

-	� Tegenprestatie: een veel vergeten onderdeel van het 

gebruik van OSS is dat je er als gebruiker (“klant”) 

ook op diverse manieren aan kunt bijdragen. Kom 

je erachter dat een project heel interessant is, maar 

er een SBOM ontbreekt? Help het project door een 

SBOM op te stellen. Is de documentatie niet op 

orde? Begin met schrijven. Ook een donatie (geld, 

serverruimte/hosting, resources/uren) kan het project 

helpen en gelijktijdig risico’s verlagen/wegnemen. 

Het is soms bijzonder dat bedrijven er geen enkel 

probleem mee hebben om €100.000 aan licenties te 

betalen bij een vendor, maar moeilijk doen om €1.000 

aan een OSS project te doneren….

Met deze pragmatische aanpak vermijd je het eindeloos 

verfijnen van beleid en begin je echt met het onder 

controle krijgen van je risico’s. Wil je een vollediger 

raamwerk met criteria voor het selecteren van een OSS 

project? Hanteer dan onze OSS Checklist.

Stel jezelf de vraag: “Welk deel van ons software-

landschap is niet gekoppeld aan een leverancier?” 

Je komt dan vermoedelijk uit bij zaken zoals (KPI) 

dashboards, low-code apps, integraties/koppelingen 

en een berg (automatiserings)scripts (PowerShell, Bash, 

Perl, Python, VB…). Het is daarom niet realistisch om te 

zeggen: “We zijn geen softwarebedrijf dus we willen geen 

verantwoordelijkheid.” Je hebt als bedrijf vrijwel altijd een 

vorm van software-ontwikkeling in huis. En juist dát maakt 

het noodzakelijk om op dit vlak actief te zijn. Zorg ervoor 

dat je:

-	� interne competenties voor OSS onderhoud, net zoals 

die competentie nodig is voor onderhoud van eigen 

apps, code en scripts

-	� procedures hebt voor vulnerability-monitoring 

en updates, zodat risico’s adequaat worden 

gesignaleerd.

-	� een fallback-plan hebt voor OSS‐componenten 

waarbij de upstream stopt. Dit is feitelijk “gewoon” 

een business continuity plan, maar dan met OSS 

software als scope.

Deze aanpak maakt het verschil of je OSS-gebruik een 

bedrijfsrisico vormt of dat je het als een strategisch 

voordeel kunt inzetten.

A. PAS HET “90% PRINCIPE” TOE

B. VERSTERK HET INTERNE EIGENAARSCHAP



6W H I T E P A P E R  -  O P E N  S O U R C E  S O F T W A R E  O N D E R  C O N T R O L E

 �WA A R OM IS  DI T  BEL A NGR IJK
-	� Er zijn steeds vaker audits, leveranciersbeoordelingen 

en compliance-vragen waarbij OSS onderdeel is van 

de keten.

-	� Projecten zoals de Cyber Resilience Act vergroten 

de druk op transparantie in softwareleveranciers en 

componenten.

-	� OSS maakt zo’n groot deel uit van een moderne 

software-stack dat je het niet mag negeren. 

Onderzoek heeft naar voren gebracht dat iedere 

vorm van software wereldwijd voor 70-90% uit OSS 

bestaat. Het zit dus per definitie in de haarvaten van 

iedere organisatie.

-	� Door te focussen op uitvoering en niet op complete 

perfectie, versnel je de adoptie en verlaag je risico’s.

 �V ERGEL IJK ING VA N R ISICOFA C T OREN T USSEN 
OPEN SOURCE EN PROPRIË TA IRE  SOF T WA RE
Risicofactor Open Source Software Propriëtaire Software

Afhankelijkheid van 
leverancier

Afhankelijkheid is beperkt. Grote projecten worden 
vaak beheerd door een stichting of community (steward 
ownership).

Hoge afhankelijkheid van één leverancier. Roadmap en 
prioriteiten liggen extern.

Toegang tot 
broncode

In principe altijd beschikbaar, tenzij specifieke 
licentievoorwaarden beperkingen opleggen.

Niet beschikbaar. Volledige “black box”.

Overstappen naar 
andere oplossing

Meestal goed mogelijk, zeker bij gebruik van open 
standaarden en open dataformaten.

Mogelijk, maar vaak complex door databinding, gesloten 
dataformaten of vendor lock-in.

Beschikbaarheid 
van updates

Grote projecten hanteren een vaste releasecyclus. 
Kleinere projecten volgen een community-driven model 
zonder strikte ritmiek.

Afhankelijk van de planning, prioriteiten en commerciële 
belangen van de leverancier.

Oppakken van 
issues en incidenten

Grote projecten hebben formele processen; bij kleinere 
projecten varieert dit sterk.

Meestal afgehandeld via SLA’s of betaalde 
supportcontracten.

Licentie- of 
supportmodel

Licenties zijn doorgaans permissief of copyleft. 
Commerciële support is vaak beschikbaar via derden, 
zeker bij grote projecten.

Licentie is een verplicht onderdeel van het product. 
Supportcontracten zijn vaak onderdeel van het 
businessmodel.

Transparantie van 
de ontwikkelcyclus

Volledige transparantie (issues, PR’s, commits). Geen inzicht. Je bent afhankelijk van wat de leverancier 
communiceert.

Continuïteitsrisico Community kan doorgaans doorgaan, behalve bij 
projecten met busfactor 1. Bij meningsverschillen kan een 
project worden geforked (bijv. MariaDB/MySQL, Forgejo/
Gitea).

Bij verkoop of overnames kan alles veranderen (licenties, 
prijzen, roadmap), zoals bijvoorbeeld bij de overname van 
VMware door Broadcom.

Zichtbaarheid 
van security-
kwetsbaarheden

Volledig inzicht in broncode. Onafhankelijke audits zijn 
mogelijk.

Geen zichtbaarheid. Afhankelijk van leverancier of externe 
audits die door de leverancier worden besteld.

Innovatietempo Doorgaans hoog, zeker in grote ecosystemen (Linux, 
Kubernetes). Kleinere projecten kunnen worden beperkt 
door capaciteit.

Afhankelijk van de strategische en commerciële belangen 
van de leverancier.

Beschikbaarheid 
van expertise

Voor grote projecten ruim beschikbaar (Linux, Python, 
Kubernetes). Voor kleinere projecten soms schaars.

Expertise vaak via leveranciers en partner-ecosystemen 
beschikbaar. Meestal beperkte keuzevrijheid en vaak 
hogere kosten.



7W H I T E P A P E R  -  O P E N  S O U R C E  S O F T W A R E  O N D E R  C O N T R O L E

Tot slot
Open source software biedt enorme kansen — transparantie, flexibiliteit, innovatie, 

lagere kosten, geen/minder vendor lock-in — maar kent ook risico’s. Deze zijn 

niet zozeer groter dan commerciële software, maar fundamenteel anders. Ze 

lijken veel meer op de risico’s voor eigen ontwikkelde tools. De vraag is daarom 

niet: Heb ik een contract met een vendor? De vraag is: Heb ik een plan?

Over AT Computing
Veiligheid koop je niet af met een contract, maar borg je met kennis en 

vakmanschap. Dat is precies waar AT Computing voor staat. Als specialist in 

Linux, Python en open source software zoals Kubernetes, Docker, Ansible en Git 

helpen wij organisaties al sinds 1985 om qua IT op eigen benen te staan.

Wij geloven niet in vendor lock-in of 'black boxes', maar in transparantie en 

kennisdeling. Of we nu adviseren over complexe infrastructuren of jouw engineers 

opleiden via onze trainingen: het doel is altijd dat jullie zelf stevig aan het stuur 

zitten en wij zo snel mogelijk weer overbodig worden.



Arnhemsestraatweg 33
6881 ND Velp (GLD)

Nederland

www.atcomputing.nl


