> WHITEPAPER
OPEN SOURCE
SOFTWARE
ONDER CONTROLE

ZONDER VENDOR LOCK-IN
VAN BELEID NAAR ACTIE

Door: Marcel Kornegoor & Marco Lammers

COMPUTING

ATYPICAL OPEN SOURCE GURUS

versie: 12/25

TL;DR

Bij vrijwel iedere organisatie vormt open source software (OSS) een onzichtbare spil in de
ICT-infrastructuur. Toch blijft vaak een zekere terughoudendheid bestaan: “We willen een
leverancier met contract, want anders lopen we onaanvaardbare risico’s en hemen we onze
verantwoordelijkheid niet”, is een geluid dat regelmatig klinkt. Dat is begrijpelijk, maar het berust

op een verouderd denkmodel. Tijd om het anders te zien!

>DE KERN VAN HET PROBLEEM

Veel bedrijven redeneren als volgt: "We zijn geen softwarebedrijf, dus we willen een contract (SLA) met een
softwareleverancier - we willen deze leverancier verantwoordelijk maken en kunnen bellen als er iets mis gaat.”

Dat klinkt logisch, maar het creéert vooral schijnzekerheid.

Geen enkel contract garandeert veiligheid. In een contract of overeenkomst worden vooral afspraken gemaakt over te
nemen maatregelen en reactiesnelheid bij een incident of verstoring. Soms is een contract voorzien van claim-modules
die recht geven op financiéle compensatie wanneer een probleem of storing langer duurt dan overeengekomen.

Ook dat zijn geen harde garanties dat de kwaliteit van de afgenomen software op orde is, het zegt alleen iets over
inspanningen die worden gedaan op gebied van kwaliteit of bepaalde kaders en richtlijnen die gehanteerd worden bij
het vervaardigen van de software. Een contract is dus feitelijk niet meer dan een vorm van risicobeheersing die een

risico vermindert. Het is geen maatregel die een risico daadwerkelijk wegneemt.

>

WHITEPAPER -RISICO'S EN MITIGERENDE MAATREGELEN VAN GENERATIVE Al

~DE STRATEGISCHE KRACHT VAN OPENHEID

Bij closed-source (propriétaire) software weet je nooit
precies wat je in huis haalt; je vertrouwt volledig op de
blauwe ogen van de vendor. Alleen de vendor kan “onder
de motorkap” en weet als enige hoe de software intern
precies werkt. Bij OSS kun je wel onder de motorkap.
Sterker nog: je kunt tot in het kleinste detail zien hoe

de (elektro) motor precies in elkaar steekt. Dit biedt
strategische voordelen die veel verder gaan dan alleen
het besparen van licentiekosten. Het belangrijkste
voordeel is digitale soevereiniteit: je wordt bevrijd

van vendor lock-in. Je bent niet langer afhankelijk van

de grillige roadmap, prijsverhogingen of (vijandelijke)
overnames van een leverancier, maar houdt zelf de
controle over de levenscyclus van je software. Daarnaast
is de innovatiesnelheid binnen actieve communities
vaak vele malen hoger dan binnen de muren van een
enkele softwarefabrikant. Doordat je de broncode kunt
inzien, inspecteren en aanpassen, verandert jouw rol van
passieve consument naar een organisatie die zelf aan het
stuur kan zitten van haar [T-landschap. Je hebt invloed op
de software en kunt op diverse manieren bijdragen aan
het verbeteren ervan. Zo pak je pas echt eigenaarschap

over je [T-risico’s!

De praktijk laat zien dat grote leveranciers, ondanks
een afgesloten contract, 60k last hebben van storingen/
uitval en problemen. Denk aan de recente GitLab-breach
bij IBM’s Red Hat, waarbij gevoelige gegevens van

deze IT-reus en haar klanten werden buitgemaakt. Of
aan storingen en grote security-incidenten bij Microsoft
of Amazon Web Services door de jaren heen — van
Exchange-lekken tot het wereldwijde CrowdStrike-
incident. Ook CDN-providers zoals CloudFlare en
andere cloudaanbieders die veelal werken op basis van
miljoenencontracten met grootzakelijke klanten hebben

grote verstoringen gehad.

WHITEPAPER - OPEN SOURCE SOFTWARE ONDER CONTROLE

Deze voorbeelden tonen ééen ding aan: een vendor-
contract neemt het risico niet gegarandeerdweg.
diensten en daarmee voor zaken als monitoring,
configuratie, beschikbaarheid, integriteit, vertrouwelijkheid
(BIV) én continuiteit. Niet de aanwezigheid van een
contract, maar de adequate uitvoering van (onderhouds)
werkzaamheden bepaalt in grote mate de veiligheid en

stabiliteit van software en IT-systemen.

Het veiligheidsdenken van de in Nederland geboren
professor Sidney Dekker laat zien dat veiligheid ontstaat
door te focussen op hoe werk écht wordt gedaan (work-
as-done), niet slechts op wat beleidsmakers verzinnen
(work-as-imagined). Wanneer je OSS als bedrijf ziet als
iets waarvoor een leverancier moet zorgen — en jij er
verder niets aan kunt/wilt doen — dan mis je de vraag
die ertoe doet: hoe zorgen we dat het voor ons veilig en

betrouwbaar werkt?

Het omdenken gaat nog een stap verder, want de
uitdagingen om OSS verantwoord in te zetten zijn
simpelweg anders dan bij propriétaire software. Het zorgt
echter ook voor kansen en mogelijkheden die propriétaire

software niet biedt. Laten we hier in de volgende

paragraaf eens op inzoomen.

>AANDACHTSPUNTEN BIJ 0SS-GEBRUIK

We kijken naar drie belangrijke aandachtspunten die
vaak over het hoofd worden gezien, maar essentieel
zijn wanneer je OSS professioneel en verantwoord wilt

gebruiken.

Bij commerciéle software kun je denken: er is een
leverancier, dus het is geregeld. Bij OSS is dat
fundamenteel anders — de afhankelijkheid ligt bij een
gemeenschap (community) van ontwikkelaars, in veel
gevallen met een bijbehorend project: dit zijn de mensen
die de software onderhouden. Niet ieder project of
iedere community is even volwassen of actief. Het is
daarom verstandig om selectiecriteria te hanteren, zoals
bijvoorbeeld:

- Is het project actief (van wanneer is de laatste
update?)?

- Heeft het project een levendige community?

- Zijn er regelmatig releases?

- Is ereenroadmap?

- Is er een stabiele vorm van funding (een commercieel
verdienmodel of sponsoring door individuen of
bedrijven)

Dit soort vragen geeft zicht op het onderhouds- en

continuiteitsrisico.

Soms wordt de uitspraak gedaan dat “vendor contracts”
nodig zijn om aan compliance-frameworks te voldoen.
Dat is onjuist. In werkelijkheid gaat het erom dat je de
risico’s voor je bedriffsvoering beheerst door middel

van adequate maatregelen. Hoe je dit realiseert wordt

in compliance-frameworks niet afgedwongen: het kan
dus op meerdere manieren. Dit hoeft dus niet per se een
contract te zijn. Je kunt OSS dus prima inzetten, zolang

je maar goed nadenkt over wat je aan OSS gebruikt

WHITEPAPER - OPEN SOURCE SOFTWARE ONDER CONTROLE

en hoe je het gecontroleerd/verantwoord gebruikt. Dit
betekent dus dat je ervoor kunt kiezen om zelf zaken als
patching, onderhoud, (security) incidenten en operationele
verantwoordelijkheid op je te nemen en dat niet aan een
externe leverancier over te laten. Mocht je dit toch niet
zelf willen doen, dan kun je bij OSS het onderhoud ook
“los” uitbesteden, zonder daarmee aan een vendor vast
te zitten. Dit is vergelijkbaar met onderhoud aan een auto.
Als je een auto koopt dan ben je niet verplicht om het
onderhoud van de auto bij de fabrikant of dealer te doen.
Je kunt ook voor een onafhankelijk garagebedrijf kiezen.
Om de risico’s onder controle te houden, is het dus
(wederom) belangrijk om kritisch te kijken welke OSS

je inzet. Volwassen OSS projecten geeft je enorm veel
inzicht in hun status. Denk aan licentie, SBOM (software
bill of materials, oftewel de lijst met "ingrediénten" waaruit
de software bestaat), project governance, security tests,
bekende kwetsbaarheden en bugs, code reviews etc.
Deze vorm van transparantie maakt feitelijk dat je veel
beter weet waar je aan begint en dus welke risico’s

je loopt. Organisaties zoals de CNCF (Cloud Native
Compute Foundation) hebben voor projecten die onder

hun auspicién vallen duidelijke richtlijnen op gebied van

overnance.

Beleidsstukken vol met hoofdstukken en paragrafen zijn
MOooi, maar wanneer ze een slaapplaats vinden op het
intranet dan brengen ze weinig effect teweeg. Wat telt

is: wie doet wat, wanneer, waarmee, en hoe meten we
dat? Dekker zou zeggen: richt je op wat mensen werkelijk
doen, niet op wat in het beleidsboek staat.Creéer daarom
liever een beperkte set aan concrete maatregelen, met
eenvoudige checklists, duidelijke eigenaren en teken het
proces uit. Zorg dat je begint met uitvoering! Beschrijf

daarna wat je daadwerkelijk doet, in plaats van andersom.

>MOGELIJKE OPLOSSINGEN IN DE PRAKTIJK

Er zijn twee concrete routes die je kunt bewandelen om
OSS-gebruik beter te beheersen — zonder de “als we

een vendor hebben dan is het veilig” illusie.

Je hoeft niet elk risico tot op het hoogste detailniveau met

beleid af te dichten. 100% veilig of 100% risicovrij bestaat

simpelweg niet. Focus daarom op de essentiéle 90% van
controls die het grootste effect hebben:

- Inventarisatie: weet welke OSS-componenten je
gebruikt (SBOM, dependency-lijst). Deze SBOM
kun je opslaan in bijvoorbeeld een CMDB of in je
versiebeheersysteem als onderdeel van je software-
project.

- Evaluatie: hanteer een checklist met o.a.
kwaliteitscriteria, toegestane licenties en project-
gezondheid

- Processen: definieer hoe nieuwe OSS wordt gekozen,
getest, geimplementeerd en onderhouden

- Continuiteit: bepaal wat je doet als er binnen een
project (“upstream”) onvoorziene veranderingen
optreden (stopzetten, wisseling van de wacht, of een
kritieke kwetsbaarheid ontstaat)

- Eigenaarschap: wijs mensen aan die verantwoordelijk
zijn voor de betreffende OSS

- Tegenprestatie: een veel vergeten onderdeel van het
gebruik van OSS is dat je er als gebruiker (“klant”)
ook op diverse manieren aan kunt bijdragen. Kom
je erachter dat een project heel interessant is, maar
er een SBOM ontbreekt? Help het project door een
SBOM op te stellen. Is de documentatie niet op
orde? Begin met schrijven. Ook een donatie (geld,
serverruimte/hosting, resources/uren) kan het project
helpen en gelijktijdig risico’s verlagen/wegnemen.

Het is soms bijzonder dat bedrijven er geen enkel
probleem mee hebben om €100.000 aan licenties te
betalen bij een vendor, maar moeilijk doen om €1.000

aan een OSS project te doneren....

WHITEPAPER - OPEN SOURCE SOFTWARE ONDER CONTROLE

Met deze pragmatische aanpak vermijd je het eindeloos
verfijnen van beleid en begin je echt met het onder
controle krijgen van je risico’s. Wil je een vollediger
raamwerk met criteria voor het selecteren van een OSS

project? Hanteer dan onze OSS Checklist.

Stel jezelf de vraag: “Welk deel van ons software-

landschap is niet gekoppeld aan een leverancier?”

Je komt dan vermoedelijk uit bij zaken zoals (KPI)

dashboards, low-code apps, integraties/koppelingen

en een berg (automatiserings)scripts (PowerShell, Bash,

Perl, Python, VB...). Het is daarom niet realistisch om te

zeggen: “We zijn geen softwarebedrijf dus we willen geen

verantwoordelijkheid.” Je hebt als bedrijf vrijwel altijd een
vorm van software-ontwikkeling in huis. En juist dat maakt
het noodzakelijk om op dit vlak actief te zijn. Zorg ervoor
dat je:

- interne competenties voor OSS onderhoud, net zoals
die competentie nodig is voor onderhoud van eigen
apps, code en scripts

- procedures hebt voor vulnerability-monitoring
en updates, zodat risico’s adequaat worden
gesignaleerd.

- een fallback-plan hebt voor OSS-componenten
waarbij de upstream stopt. Dit is feitelijk “gewoon”
een business continuity plan, maar dan met OSS
software als scope.

Deze aanpak maakt het verschil of je OSS-gebruik een

bedrijfsrisico vormt of dat je het als een strategisch

voordeel kunt inzetten.

>WAAROM IS DIT BELANGRIJK

Er zijn steeds vaker audits, leveranciersbeoordelingen

en compliance-vragen waarbij OSS onderdeel is van
de keten.

Projecten zoals de Cyber Resilience Act vergroten

de druk op transparantie in softwareleveranciers en

componenten.

OSS maakt zo’n groot deel uit van een moderne
software-stack dat je het niet mag negeren.
Onderzoek heeft naar voren gebracht dat iedere
vorm van software wereldwijd voor 70-90% uit OSS
bestaat. Het zit dus per definitie in de haarvaten van
iedere organisatie.

Door te focussen op uitvoering en niet op complete

perfectie, versnel je de adoptie en verlaag je risico’s.

> VERGELIJKING VAN RISICOFACTOREN TUSSEN
OPEN SOURCE EN PROPRIETAIRE SOFTWARE

Risicofactor
Afhankelijkheid van

leverancier

Toegang tot
broncode

Overstappen naar
andere oplossing

Beschikbaarheid
van updates

Oppakken van
issues en incidenten

Licentie- of
supportmodel

Transparantie van
de ontwikkelcyclus

Continuiteitsrisico

Zichtbaarheid
van security-
kwetsbaarheden

Innovatietempo

Beschikbaarheid
van expertise

Open Source Software

Afhankelijkheid is beperkt. Grote projecten worden
vaak beheerd door een stichting of community (steward
ownership).

In principe altijd beschikbaar, tenzij specifieke
licentievoorwaarden beperkingen opleggen.

Meestal goed mogelijk, zeker bij gebruik van open
standaarden en open dataformaten.

Grote projecten hanteren een vaste releasecyclus.
Kleinere projecten volgen een community-driven model
zonder strikte ritmiek.

Grote projecten hebben formele processen; bij kleinere
projecten varieert dit sterk.

Licenties zijn doorgaans permissief of copyleft.
Commerciéle support is vaak beschikbaar via derden,
zeker bij grote projecten.

Volledige transparantie (issues, PR’s, commits).

Community kan doorgaans doorgaan, behalve bij
projecten met busfactor 1. Bij meningsverschillen kan een
project worden geforked (bijv. MariaDB/MySQL, Forgejo/
Gitea).

Volledig inzicht in broncode. Onafhankelijke audits zijn
mogelijk.

Doorgaans hoog, zeker in grote ecosystemen (Linux,
Kubernetes). Kleinere projecten kunnen worden beperkt
door capaciteit.

Voor grote projecten ruim beschikbaar (Linux, Python,
Kubernetes). Voor kleinere projecten soms schaars.

WHITEPAPER - OPEN SOURCE SOFTWARE ONDER CONTROLE

Propriétaire Software

Hoge afhankelijkheid van één leverancier. Roadmap en
prioriteiten liggen extern.

Niet beschikbaar. Volledige “black box”.

Mogelijk, maar vaak complex door databinding, gesloten
dataformaten of vendor lock-in.

Afhankelijk van de planning, prioriteiten en commerciéle
belangen van de leverancier.

Meestal afgehandeld via SLAs of betaalde
supportcontracten.

Licentie is een verplicht onderdeel van het product.
Supportcontracten zijn vaak onderdeel van het
businessmodel.

Geen inzicht. Je bent afhankelijk van wat de leverancier
communiceert.

Bij verkoop of overnames kan alles veranderen (licenties,
prijzen, roadmap), zoals bijvoorbeeld bij de overname van
VMware door Broadcom.

Geen zichtbaarheid. Afhankelijk van leverancier of externe
audits die door de leverancier worden besteld.

Afhankelijk van de strategische en commerciéle belangen
van de leverancier.

Expertise vaak via leveranciers en partner-ecosystemen
beschikbaar. Meestal beperkte keuzevrijheid en vaak
hogere kosten.

Tot slot

Open source software biedt enorme kansen — transparantie, flexibiliteit, innovatie,
lagere kosten, geen/minder vendor lock-in — maar kent ook risico’s. Deze zijn
niet zozeer groter dan commerciéle software, maar fundamenteel anders. Ze
lijken veel meer op de risico’s voor eigen ontwikkelde tools. De vraag is daarom

niet: Heb ik een contract met een vendor? De vraag is: Heb ik een plan?

Over AT Computing

Veiligheid koop je niet af met een contract, maar borg je met kennis en
vakmanschap. Dat is precies waar AT Computing voor staat. Als specialist in
Linux, Python en open source software zoals Kubernetes, Docker, Ansible en Git

helpen wij organisaties al sinds 1985 om qua IT op eigen benen te staan.

Wij geloven niet in vendor lock-in of 'black boxes', maar in transparantie en
kennisdeling. Of we nu adviseren over complexe infrastructuren of jouw engineers
opleiden via onze trainingen: het doel is altijd dat jullie zelf stevig aan het stuur

zitten en wij zo snel mogelijk weer overbodig worden.

WHITEPAPER - OPEN SOURCE SOFTWARE ONDER CONTROLE

COMPUTING

ATYPICAL OPEN SOURCE GURUS

Arnhemsestraatweg 33
6881 ND Velp (GLD)
Nederland

www.atcomputing.nl

